Partial Derivatives, Singular Integrals and Sobolev Spaces in Dyadic Settings

نویسندگان

چکیده

In this note we show that the general theory of vector valued singular integral operators Calderon-Zygmund defined on metric measure spaces, can be applied to obtain Sobolev type regularity properties for solutions dyadic fractional Laplacian. doing so, define partial derivatives in terms Haar multipliers and homogeneous operators.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundedness of Oscillatory Singular Integrals on Weighted Sobolev Spaces

In this paper, an oscillatory singular integral operator T deened by T f (x) = Z IR e ixP(y) f (x ? y) y dy is showed to be bounded on a weighted Sobolev space H

متن کامل

Rough singular integrals on product spaces

where, p.v. denotes the principal value. It is known that if Φ is of finite type at 0 (see Definition 2.2) and Ω ∈ 1(Sn−1), then TΦ,Ω is bounded on Lp for 1<p <∞ [15]. Moreover, it is known that TΦ,Ω may fail to be bounded on Lp for any p if the finite-type condition is removed. In [8], Fan et al. showed that the Lp boundedness of the operator TΦ,Ω still holds if the condition Ω ∈ 1(Sn−1) is re...

متن کامل

Circulation integrals and critical Sobolev spaces : problems of optimal constants

We study various questions related to the best constants in the following inequalities established in [1, 2, 3]; ̨̨̨Z Γ ~ φ · ~t ̨̨̨ ≤ Cn‖∇φ‖Ln |Γ| , and ̨̨̨Z Rn ~ φ · ~ μ ̨̨̨ ≤ Cn‖∇φ‖Ln‖~ μ‖ , where Γ is a closed curve in Rn, ~ φ ∈ C∞ c (Rn; Rn) and ~ μ is a bounded measure on Rn with values into Rn such that div ~ μ = 0. In 2d the answers are rather complete and closely related to the best constants for ...

متن کامل

Singular Integrals and Commutators in Generalized Morrey Spaces

The purpose of this paper is to study singular integrals whose kernels k(x; ξ) are variable, i.e. they depend on some parameter x ∈ R and in ξ ∈ R \ {0} satisfy mixed homogeneity condition of the form k(x;μξ1, . . . , μ ξn) = μ − ∑ n i=1 ik(x; ξ) with positive real numbers αi ≥ 1 and μ > 0. The continuity of these operators in L(R) is well studied by Fabes and Rivière. Our goal is to extend the...

متن کامل

Sharp Singular Adams Inequalities in High Order Sobolev Spaces

In this paper, we prove a version of weighted inequalities of exponential type for fractional integrals with sharp constants in any domain of finite measure in R. Using this we prove a sharp singular Adams inequality in high order Sobolev spaces in bounded domain at critical case. Then we prove sharp singular Adams inequalities for high order derivatives on unbounded domains. Our results extend...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis in Theory and Applications

سال: 2023

ISSN: ['1672-4070', '1573-8175']

DOI: https://doi.org/10.4208/ata.oa-2021-0051